bzoj4173 数学

Description

题目链接:bzoj4173

设 $S(n,m)$ 为满足 $m \bmod k + n\bmod k \ge k$ 的所有正整数 $k$ 组成的集合,求
$$
\phi(n)\times \phi(m)\times \sum_{k\in S(n,m)}\phi(k)\bmod 998244353
$$
$n,m\leq 10^{15}$

Solution

重点是看后面的那个式子怎么化:
$$
\sum_{k\in S(n,m)}\phi(k)
=\sum_{n\bmod k + m\bmod k \ge k} \phi(k)\
$$
然后注重这个 $n\bmod k + m\bmod k \ge k$ 的转化:

令 $n = q1 \times k +r1,m=q2\times k +r2(0\leq r1,r2<k)$,则有:
$$
r1+r2=n\bmod k+m\bmod k\ge k
$$
由于 $n+m=(q1+q2)\times k+(r1+r2)$,则:
$$
(n+m)-(q1+q2)\times k = r1+r2 \ge k
$$
两边同除 $k$ 得:
$$
\lfloor \frac{n+m}{k}\rfloor-\lfloor \frac{n}{k}\rfloor-\lfloor \frac{m}{k}\rfloor=1
$$
所以:
$$
\begin{align}
\sum_{n\bmod k + m\bmod k \ge k} \phi(k)
&=\sum_{k=1}^{n+m}\phi(k)\times[\lfloor \frac{n+m}{k}\rfloor-\lfloor \frac{n}{k}\rfloor-\lfloor \frac{m}{k}\rfloor=1]\\
&=\sum_{k=1}^{n+m}\phi(k)\times(\lfloor \frac{n+m}{k}\rfloor-\lfloor \frac{n}{k}\rfloor-\lfloor \frac{m}{k}\rfloor)\\
&=\sum_{k=1}^{n+m}\phi(k)\times\lfloor \frac{n+m}{k}\rfloor-\sum_{k=1}^{n+m}\phi(k)\times\lfloor \frac{n}{k}\rfloor-\sum_{k=1}^{n+m}\phi(k)\times\lfloor \frac{m}{k}\rfloor\\
&=\sum_{k=1}^{n+m}\phi(k)\times\lfloor \frac{n+m}{k}\rfloor-\sum_{k=1}^{n}\phi(k)\times\lfloor \frac{n}{k}\rfloor-\sum_{k=1}^{m}\phi(k)\times\lfloor \frac{m}{k}\rfloor\\
&=\sum_{k=1}^{n+m}i-\sum_{k=1}^{n}i-\sum_{k=1}^{m}i\\
&=\frac{(n+m)\times(n+m-1)}{2}-\frac{n\times(n-1)}{2}-\frac{m\times(m-1)}{2}\\
&=n\times m
\end{align}
$$
所以:
$$
\phi(n)\times \phi(m)\times \sum_{k\in S(n,m)}\phi(k)=\phi(n)\times \phi(m)\times n\times m
$$
直接搞就好了。

Code

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define W while
#define I inline
#define RI register int
#define int long long
#define Cn const
#define CI Cn int&
#define gc getchar
#define D isdigit(c=gc())
#define pc(c) putchar((c))
#define min(x,y) ((x)<(y)?(x):(y))
#define max(x,y) ((x)>(y)?(x):(y))
using namespace std;
namespace Debug{
    Tp I void _debug(Cn char* f,Ty t){cerr<<f<<'='<<t<<endl;}
    Ts I void _debug(Cn char* f,Ty x,Ar... y){W(*f!=',') cerr<<*f++;cerr<<'='<<x<<",";_debug(f+1,y...);}
    Tp ostream& operator<<(ostream& os,Cn vector<Ty>& V){os<<"[";for(Cn auto& vv:V) os<<vv<<",";os<<"]";return os;}
    #define gdb(...) _debug(#__VA_ARGS__,__VA_ARGS__)
}using namespace Debug;
namespace FastIO{
    Tp I void read(Ty& x){char c;int f=1;x=0;W(!D) f=c^'-'?1:-1;W(x=(x<<3)+(x<<1)+(c&15),D);x*=f;}
    Ts I void read(Ty& x,Ar&... y){read(x),read(y...);}
    Tp I void write(Ty x){x<0&&(pc('-'),x=-x,0),x<10?(pc(x+'0'),0):(write(x/10),pc(x%10+'0'),0);}
    Tp I void writeln(Cn Ty& x){write(x),pc('\n');}
}using namespace FastIO;
Cn int N=1e5,p=998244353;
int n,m;
I int phi(RI m){
    RI i,S=m;for(i=2;i*i<=m;i++) if(!(m%i)){
        S=S/i*(i-1);W(!(m%i)) m/=i;
    }if(m>1) S=S/m*(m-1);return S%p;
}
signed main(){return read(n,m),writeln(phi(n)*phi(m)%p*(n%p)%p*(m%p)%p),0;}

评论

  1. Windows Chrome 91.0.4472.77
    3周前
    2021-7-08 13:46:31

    万物复苏的

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇